1,781 research outputs found

    Crossover from percolation to diffusion

    Full text link
    A problem of the crossover from percolation to diffusion transport is considered. A general scaling theory is proposed. It introduces phenomenologically four critical exponents which are connected by two equations. One exponent is completely new. It describes the increase of the diffusion below percolation threshold. As an example, an exact solution of one dimensional lattice problem is given. In this case the new exponent q=2q=2.Comment: 10 pages, 1 figur

    The 4^4He(e,e′p)3(e,e^\prime p)^3H Reaction with Full Final--State Interaction

    Full text link
    An {\it ab initio} calculation of the 4^4He(e,e′p)3(e,e^\prime p)^3H longitudinal response is presented. The use of the integral transform method with a Lorentz kernel has allowed to take into account the full four--body final state interaction (FSI). The semirealistic nucleon-nucleon potential MTI--III and the Coulomb force are the only ingredients of the calculation. The reliability of the direct knock--out hypothesis is discussed both in parallel and in non parallel kinematics. In the former case it is found that lower missing momenta and higher momentum transfers are preferable to minimize effects beyond the plane wave impulse approximation (PWIA). Also for non parallel kinematics the role of antisymmetrization and final state interaction become very important with increasing missing momentum, raising doubts about the possibility of extracting momentum distributions and spectroscopic factors. The comparison with experimental results in parallel kinematics, where the Rosenbluth separation has been possible, is discussed.Comment: 17 pages, 5 figure

    A small parameter approach for few-body problems

    Full text link
    A procedure to solve few-body problems is developed which is based on an expansion over a small parameter. The parameter is the ratio of potential energy to kinetic energy for states having not small hyperspherical quantum numbers, K>K_0. Dynamic equations are reduced perturbatively to equations in the finite-dimension subspace with K\le K_0. Contributions from states with K>K_0 are taken into account in a closed form, i.e. without an expansion over basis functions. Estimates on efficiency of the approach are presented.Comment: 17 pages, 1 figur

    Method to solve integral equations of the first kind with an approximate input

    Full text link
    Techniques are proposed for solving integral equations of the first kind with an input known not precisely. The requirement that the solution sought for includes a given number of maxima and minima is imposed. It is shown that when the deviation of the approximate input from the true one is sufficiently small and some additional conditions are fulfilled the method leads to an approximate solution that is necessarily close to the true solution. No regularization is required in the present approach. Requirements on features of the solution at integration limits are also imposed. The problem is treated with the help of an ansatz proposed for the derivative of the solution. The ansatz is the most general one compatible with the above mentioned requirements. The techniques are tested with exactly solvable examples. Inversions of the Lorentz, Stieltjes and Laplace integral transforms are performed, and very satisfactory results are obtained. The method is useful, in particular, for the calculation of quantum-mechanical reaction amplitudes and inclusive spectra of perturbation-induced reactions in the framework of the integral transform approach.Comment: 28 pages, 1 figure; the presentation is somewhat improved; to be published in Phys. Rev.
    • …
    corecore